If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(X^2)+1.5X-1=0
a = 1; b = 1.5; c = -1;
Δ = b2-4ac
Δ = 1.52-4·1·(-1)
Δ = 6.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.5)-\sqrt{6.25}}{2*1}=\frac{-1.5-\sqrt{6.25}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.5)+\sqrt{6.25}}{2*1}=\frac{-1.5+\sqrt{6.25}}{2} $
| -4.8^2+1.6x+24=0 | | 2x^2+32x-450=0 | | 1/3x+4=4x-1/3 | | 6(x-1)+1=-29 | | 0.1x*(x-3)*(x-6)=0 | | 0.1x(x+3)(x-6)=0 | | 3x/2=2x+4 | | -70=-4x-3(-7x-22) | | 4(x+1)=3(2x-3) | | w÷8+3=12 | | 2x-3/5=x+3 | | -125-10x+14x=25 | | -4x+7=-2 | | -2x+4=5x-5 | | -9/5=1/3x-9/4 | | 4*(2^(3x)+2^(3x))=20 | | x-3-3=9 | | 4*2^(3x)+2^(3x)=20 | | 1/4x+7/16=117/16 | | 3x-1/5-2x=0 | | 2x+4=10x-5 | | 7a-22=-1 | | 7y-2y+y=24 | | 4^(x+1)+2^(x-1)=17 | | 7x=1x+36 | | (7-x)+(3x)+(2x+2)=17 | | 12x+15=33 | | -2(3-x)=3-x | | 2x-4^x=0.8-16 | | 3(x+2)-7x=-6x(x+2)-x | | (6)/(x)+3=(3x)/(x+1) | | 6x-26=3x-5 |